2,558 research outputs found

    A case study on mining social media data

    Get PDF
    In recent years, usage of social media websites have been soaring. This trend not only limits to personal but corporate web-sites. The latter platforms contain an enormous amount of data posted by customers or users. Without a surprise, the data in corporate social media web-sites are normally link to the products or services provided by the companies. Therefore, the data can be utilized for the sake of companies’ benefits. For example, operations management research and practice with the objective to make decisions on product and process design. Nevertheless, little has been done in this area. In this connection, this paper presents a case study to showcase how social media data can be exploited. A structured approach is proposed which involves the analysis of social media comments and a statistical cluster analysis to identify the inter-relationships among important factors

    Resonant Coherent Phonon Spectroscopy of Single-Walled Carbon Nanotubes

    Get PDF
    Using femtosecond pump-probe spectroscopy with pulse shaping techniques, one can generate and detect coherent phonons in chirality-specific semiconducting single-walled carbon nanotubes. The signals are resonantly enhanced when the pump photon energy coincides with an interband exciton resonance, and analysis of such data provides a wealth of information on the chirality-dependence of light absorption, phonon generation, and phonon-induced band structure modulations. To explain our experimental results, we have developed a microscopic theory for the generation and detection of coherent phonons in single-walled carbon nanotubes using a tight-binding model for the electronic states and a valence force field model for the phonons. We find that the coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We compared our theoretical results with experimental results on mod 2 nanotubes and found that our model provides satisfactory overall trends in the relative strengths of the coherent phonon signal both within and between different mod 2 families. We also find that the coherent phonon intensities are considerably weaker in mod 1 nanotubes in comparison with mod~2 nanotubes, which is also in excellent agreement with experiment.Comment: 21 pages, 22 figure

    An Empirical Investigation into the Antecedents and Consequences of Customer Engagement in Omnichannel Retailing

    Get PDF
    Engaging customers across channels has become one of the biggest challenges for retailers adopting an omnichannel strategy. In this study, we examine how channel integration quality influences customer engagement in the context of omnichannel retailing. Drawing on the conceptual model of customer engagement, we proposed a research model to explain the effects of breadth of channel choice, transparency of channel-service configuration, content consistency, and process consistency on customer engagement, as well as the positive outcomes associated with the engagement. The research model will be tested with a sample of 500 omnichannel customers using a structural equation modeling approach. This study is expected to contribute to the research on, and practice of, the omnichannel customer engagement by validating the antecedents and consequences of such engagement as well as providing practitioners with insights into devising a successful omnichannel retailing strategy

    Controlled Quantum Secret Sharing

    Full text link
    We present a new protocol in which a secret multiqubit quantum state Ψ\ket{\Psi} is shared by nn players and mm controllers, where Ψ\ket{\Psi} is the encoding state of a quantum secret sharing scheme. The players may be considered as field agents responsible for carrying out a task, using the secret information encrypted in Ψ\ket{\Psi}, while the controllers are superiors who decide if and when the task should be carried out and who to do it. Our protocol only requires ancillary Bell states and Bell-basis measurements.Comment: 6 pages, 0 figure, RevTeX4; published version with minor change

    Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes

    Full text link
    We have investigated the polarization dependence of the generation and detection of radial breathing mode (RBM) coherent phonons (CP) in highly-aligned single-walled carbon nanotubes. Using polarization-dependent pump-probe differential-transmission spectroscopy, we measured RBM CPs as a function of angle for two different geometries. In Type I geometry, the pump and probe polarizations were fixed, and the sample orientation was rotated, whereas, in Type II geometry, the probe polarization and sample orientation were fixed, and the pump polarization was rotated. In both geometries, we observed a very nearly complete quenching of the RBM CPs when the pump polarization was perpendicular to the nanotubes. For both Type I and II geometries, we have developed a microscopic theoretical model to simulate CP generation and detection as a function of polarization angle and found that the CP signal decreases as the angle goes from 0 degrees (parallel to the tube) to 90 degrees (perpendicular to the tube). We compare theory with experiment in detail for RBM CPs created by pumping at the E44 optical transition in an ensemble of single-walled carbon nanotubes with a diameter distribution centered around 3 nm, taking into account realistic band structure and imperfect nanotube alignment in the sample

    Nonperturbative Determination of Heavy Meson Bound States

    Get PDF
    In this paper we obtain a heavy meson bound state equation from the heavy quark equation of motion in heavy quark effective theory (HQET) and the heavy meson effective field theory we developed very recently. The bound state equation is a covariant extention of the light-front bound state equation for heavy mesons derived from light-front QCD and HQET. We determine the covariant heavy meson wave function variationally by minimizing the binding energy Λˉ\bar{\Lambda}. Subsequently the other basic HQET parameters λ1\lambda_1 and λ2\lambda_2, and the heavy quark masses mbm_b and mcm_c can also be consistently determined.Comment: 15 pages, 1 figur

    Vibration characteristics of a large wind turbine tower on non-rigid foundations

    Get PDF
    Vibration characteristics of the Mod-OA wind turbine supported by nonrigid foundations were investigated for a range of soil rigidities. The study shows that the influence of foundation rotation on the fundamental frequency of the wind turbine is quite significant for cohesive soils or loose sand. The reduction in natural frequency can be greater than 20 percent. However, for a foundation resting on well graded, dense granular materials or bedrock, such effect is small and the foundation can be treated as a fixed base
    corecore